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Abstract 

In  this paper, we consider the linear quadratic optimal control 

problem on infinite time interval for linear time-invariant systems defined on 

Hilbert spaces. The optimal control is given by a feedback form in terms of 

solution ll to the associated algebraic Riccati equation (ARE). A Ritz type 

approximation is used to obtain a sequence nN of finite dimensional 

approximations of the solution to ARE. A sufficient condition that shows nN 

converges strongly to n is obtained. Under this condition, we derive a 

formula which can be used to obtain a rate of convergence of nN to n. 

We demonstrate and apply the results for the Galerkin approximation for 

parabolic systems and the averaging approximation for hereditary differential 

systems. 
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1. Introduction 

Assume Z, U and Y are Hilbert spaces. Consider the evolution 

equation on Z 

(1.1) 

where u(t) is a U-valued control function, A is the infinitesimal generator of 

strongly continuous semigroup S(t) on Z, and B E X(U,Z). The Y-valued 

observation function y is given by  

k(t) = A z(t) + B u(t) , ~(0) = z0 E Z 

(1.2) y(t) = c z(t) , t 3 0 . 

We assume that 

the solution of (1.1) is given by 

C E X(Z,Y). We interpret the equation (1.1) in the mild sense; 

(1.3) 

Consider 

(1.4) 

z(t) = S(t)zo + S(t-s)B u(s)ds . 

the minimization problem; minimize the cost functional 

subject to (1.3). Then the following result is well-known [10],[11]: 

Theorem 1.1 Assume (A&) is stabilizable and (A,C) is detectable. Then 

there exists a unique nonnegative self-adjoint solution n to the algebraic 

Riccati equation in Z: 

(1.5) (A*n + n4 - nBB*n + C*C)z = 0 for all z E dom(A) , 

and the optimal solution uo to (1.4) is given by 

uo(t) = -B*n T(t)zo 

where T(t) is the strongly continuous semigroup generated by A - BB*n 

and it is uniformly exponentially stable. 
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Here we have 

Definition 1.2 (1) (0) is stabilizable if there exists an operator 

K E X(Z,U) such that A-BK generates a uniformly exponentially stable 

semigroup on Z. 

(2) (A ,C)  is detectable if there exists an  operator. G E X(Y,Z) such that A - GC 

generates a uniformly exponentially stable semigroup. 

The purpose here is to construct a finite dimensional approximation 

of the optimal feedback gain operator Ben. Let us consider a sequence of 

approximating problems (Z ,A ,B ,C ); let ZN be a sequence of finite 

dimensional subspaces of Z and PN be the orthogonal projection of Z onto 

ZN. Assume A N  : ZN +ZN , BN : U + ZN and CN : ZN + Y are continuous. 

Then consider the Nth approximating problem of (1.4) 

N N N N  

minimize JN(u,zo) = ( IICNzN(t)1I2 + Ilu(t)I12)dt 
(1.6) la 
subject to 

t 

(1.7) zN(t) = SN(t)PNzo + SN(t-s)BNu(s)ds 

where SN(t) = eA t, t 3 0. Then the optimal control uN of (1.6) is given 

0 

N 

by 

uN(t) = -B N* n N e (AN-BNBN*nN)t P z o ,  N t 3 O  

where nN : ZN + ZN is self-adjoint and satisfies the Nth approximating 

algebraic Riccati equation in ZN; 

N* N Here, B n , N 3 1 yields a sequence of finite dimensional approximations of 
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the optimal feedback gain [3]. 

N N N N  In this paper we first obtain a condition on (Z ,A ,B ,C ) for which 

(1.8) admits a unique nonnegative solution nN, and nNPN converges strongly to n 

in §2. Such a condition has been discussed in  [2], [3] but the condition in this 

paper improves those in [2], [3], i.e., we introduce the uniform detectability 

condition (see, (H3) in 52, for the definition) which is additional to those 

considered in [2], and using this condition, we are  able to show that there 

exists an integer No such that for N 3 No 

for positive constants M 3 1 and u (independent of N 3 No). This assertion 

is a part of assumptions in [2, Theorem 2.21. The uniform detectability 

condition is satisfied if C*C is coercive, which is assumed in the discussions in 

[2,p. 6931. Thus, the uniform detectability condition can be regarded as a 

relaxation of the coercivity assumption mentioned above. Next, under the 

condition in §2 we derive a formula which provides a rate of convergence of 

nN to Il and apply the formula for specific examples. 
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2. Uniform Stabilitv and Strong ConverPence 

N 
We assume the following. Let SN(t) = eA t, t 2 0 

(H1) For each z E Z, we have 

(i) 

(ii) SN(t)*pNz + S*(t)z , 

SN(t)PNz + S(t)z , and 

where the convergences are uniform in t on bounded subsets of [o,~). 

(H2) (i) For each u E U, BNu -. Bu and for each z E Z 

BN*PNz -. B*z. 

(ii) For each z E Z, CNPNz + Cz and for  each y E Y 

CN*Y + c*y.  

(H3) (i) The family of the pairs (AN,BN) is uniformly stabilizable: i.e. 

there exists a sequence of operators K N  E X(ZN,U) such that 

supIIKNII < OD and 

for  some positive constants M, 3 1 and w1 . 

(ii) The family of the pairs (AN,CN) is uniformly detectable; Le. 

there exists a sequence of operators GN E X(Y,ZN) such that 

sup))GNII < ~3 and 

N- N N 
l l  e(A ltPNII < M2e132t , t 3 0 

for  some positive constants M, 3 1 and w2. 

Remark (1) Suppose BN = PNB and CN = CPN. Then (H2) holds 

since i t  follows from (HI) that PNz + z for  all z E Z. 

(2) The assumption (H3) is closely related to the preservation of 

exponential stability under approximation in [3,Conjecture 7-11 and i t  is shown 

in [2] that  (H3) (i) ((POES) in [2]) is satisfied for  parabolic systems using the 



Galerkin approximation. 

(3) for 

some K E X(Z,U) and G E X(Y,Z) such that A - BK and A - GC generate 

uniformly exponentially stable semigroups on Z. 

Theorem 2.1 Suppose (Hl)-(H3) are satisfied. Then for  each N, (1.8) 

admits a unique nonnegative solution nN, supllIINII < a, and there exist 

positive constants M, b 1 and w3 (independent of N) such that 

A natural way to argue (H3) is to take KN = KPN and GN = PNG 

(AN-BNBN*nN)t P N 11 6 M3e-"3t , t b 0 . Ile 

Proof: The proof is based on the arguments in [ll]. The existence and 

uniqueness of solutions to (1.8) follow from Theorem 1.1. Since 

<nNPNz,z> = min JN(u,z), (H3) (i) implies that 

<nNPNz,z> 6 JN(-KNzN( -);z) 

6 B I I Z ~ ~ ~  for some positive constant B 

Since nN is self-adjoint, nonnegative definite, this implies that IIllNII d 13. 

By the variation of constants formula 

N- N N 
where TN(t) = e(A )t, t b 0. Here, from (1.8) 
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Thus, for  all t 3 0 

Now, from (2.1), we have for all t 3 0 

+ IICNzN(s) 1I2)ds 

where we have used the Young's inequality. From (2.2), we have 

for all z E Z. Therefore, the theorem follows from the Datko's theorem [7]. 

(Q.E.D.) 

The following is a consequence of [3, Theorem 6.91 and [2, Theorem 

2.21. 

Corollarv 2.2 Suppose ( A B )  is stabilizable and (A,C) is detectable and 

assume (Hl) - (H3) are satisfied. Then the unique nonnegative solution nN 

to (1.8) converges strongly to I& the unique solution to (1.5). 

Theorem 2.3 Suppose that B is compact and BN = PNB and that 

(Hl)(i) and (H3)(i) are satisfied. Then ( A B )  is stabilizable. 

Proof: Then i t  is 

easy to show that (A,C) is detectable and (AN,CN), N 3 1 are uniformly 

detectable since (Hl)(i) implies that for some M 3 1 and w independent of N, 

Let us consider the case C = I and CN = PN with Y = Z. 
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IISN(t)PNII E Mew, t 3 0. It then follows from Theorem 1.1 and (H3)(i) that for  

each N, (1.8) with CN = PN has a unique solution fiN. Using the same 

argument as in the proof of Theorem 2.1, we have IIfiNII E b for some positive 

constant b. Thus, by Theorem 6.5 in [3], there exists a subsequence of iN 
converges weakly to some nonnegative, self-adjoint operator % We will show 

A 

that ll satisfies (1.5) with C = I. Since PN;~N = i ~ ,  B N * ~ ~ N  - - 

N . * ~ N .  
B*PNiN = B*$. Since B* is compact, for each z E Z, B J II JPNz converges 

strongly to B*hz. 

But since (A,C) is detectable, by [lo, Theorem 3.21, A - 

I t  now follows from [3, Theorem 6.71 that fi satisfies (1.5) 

BB*fi generates a 

uniformly exponentially stable semigroup on Z. 

(Q.E.D.) 

Remark 2.4 Roughly speaking, Theorem 2.3 means that the uniform 

stabilizability implies the stabilizability of ( A B ) .  The dual statement of 

Theorem 2.3 also holds: i.e., suppose C is compact, CN = CPN, then (Hl)(ii) 

and (H3)(ii) imply that (A,C) is detectable. This statement can be proved by 

applying the exactly same arguments as in the proof of Theorem 2.3 to the 

dual Riccati equation 

(AT: + EA* - EC*CE + I) z = 0 

for all z E dom(A*). 
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3. Converpence Rate 

In this section, we assume that (Hl) and (H3) are satisfied and let 

BN = PNB and CN = CPN. Moreover, we assume 

(H4) 

From (lS), we have for  all z E dom(A) 

For each z E Z, nz E dom(A*) and B is compact. 

2<nz,Az> - < B * ~ z , B * ~ z >  + <CZ,CZ> = 0 

Thus, (H4) and the density of dom(A) in Z imply that for all z E Z 

~ < A * ~ z , z >  - <B*nz,B*nz> + <CZ,CZ> = 0 . 
Define the self-adjoint operator fiN = PNIIPN. Then for all x E ZN 

(3.1) 2(AN*fiNx,x> - <B*fiNx, B*fiNx> + <CNx,CNx> f <AN,,,> = 0 , 

where AN E X(ZN) is a self-adjoint operator defined by 

(3.2) <AN,,,> = 2<(A* - AN*PN)nx,x> 

+ <B*(fiN - nN)x,B*(fiN + nN)x> for  all x E ZN . 

From (1.8), for x E ZN 

(3.3) 2<AN*nNx,x'> - <BN*nNx,BN*nNx> + <CNx,CNx> = 0 . 

Hence by subtracting (3.1) from (3.3) 

2 < ( P  - BNBN*rIN)X, ( n N  - iN)x> 

+ <BN*(nN - fiN)x, BN*(nN - i N ) x >  - <AN,,,> = 0 

for  all x E zN. Or equivalently 
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Similarly, subtracting (3.3) from (3.1), we obtain 

Here, from Theorem 2.1, we have 

N_ N N* N 

Ile ( A  It PNll < M3e-w3t, t 3 0 

with M, 3 1 and w3 > 0. Since nNPN -, Il, strongly by Corollary 2.2 and 

B is compact 

Hence by the variation of constants formula and the Gronwall's lemma, 

(mu3+ IIB 11 p * c n  N- n "N 1 p 
( AN-BNBN*iN) t N I le  II < M3e 

It then follows that there exists an  integer No such that if N b No, 

Now, from (3.4) for  all x E ZN 

and from (3.5) 

N N N*^N 
0 

. (3.7) <(fiN - nN)x,x> - 'llBN(nN - fiN)e(A -' ltx II 2dt 
0 

These inequalities imply that for  x E ZN 
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so that 
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4. ExamDles 

In this section we discuss the examples in which (Hl)-(H4) are 

satisfied and then apply the formula (3.8) and (3.9) to obtain a convergence 

rate of nN to n 

4.1 Parabolic Svstems 

Assume V and H are Hilbert spaces and V C H with 

continuous dense injection i. Consider a bilinear form u on V such that 

where w > 0. It then follows from [9] that  there exists an  operator A E 

P(V,V*) such that 

a(u,v) = <-Au,v> for  u,v E V , 
v*,v  (4.3) 

where V C H = H* C V* and H bcing the pivoting space, and that A 

on H with 

(4.4) dom(A) = (x E H : Ax E H) dense in V, 

generates the analytic semigroup on H and V*. For given B E X(U,H) and 

C E P(H,V) consider approximating problems (Z ,A ,B ,C ); i.e. let ZN be a 

sequence of finite dimensional subspace of V and AN: ZN -, ZN is defined by 

N N N N  

(4.5) <-~Nz,x> = @z,x) for z,x E zN . 

Let PN be the orthogonal projection of H onto ZN and assume BN = 

PNB and CN = CPN. We assume the approximation condition: 
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For each z E V there exists an  element zN E ZN 

(4.6) such that llz - zNII d E(N) where E(N) -. 0 as  N - - . 
V 

It then follows from [2] that (Hl) holds and if ( A B )  is stabilizable and (A,C) is 

detectable, then (H3) holds. Thus from Corollary 2.2, nN converges strongly to 

n However one cannot apply the formula (3.8)-(3.9) as i t  is, since 

nZ C dom(A*) is the maximal regularity without assuming any regularity of C. 

This can be demonstrated by the following example. Consider the case when 

H = L2(0,1) and V = Hi(O,l), and 

d 
dx 

u(x) -v(x)dx for  u,v E HA . 

Let us consider the Liapunov equation on H 

(4.7) AE t EA + Q = 0 

where Q is self-adjoint operator on H. If for each z E Z, 

then Q satisfies AQ + q = 0 with Dirichlet boundary condition, 

a2 a2 
ax2 aY2 

where AQ = - Q + - Q for  Q E H2([0,1] x [0,1]). In general (e.g., see 

[61,[81) 

dxdy < M r r i q 1 2  dxdy . 
0 0  

This implies EL2 C dom(A) is the maximal regularity. 

Hence we will modify the arguments i n  Section 3 to improve the 

formula (3.8)-(3.9) for  this example. First we note that in (3.2) for  x E ZN 

I <(A*-AN*PN) nx,x >I = I a(x,(fiN - n)x) I 
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Lemma 4.1 There exists a positive constant M such that 

a0 
N- N N* N 2 

J )t pNxl/ dt c M I I X ~ ~ ~  , and 
V 0 

N N N*N 
Proof  Let tN(t) = e ( A  -B )t PNx , t 3 0. Then fN(t) satisfies 

d 
dt  
- fN(t) = (AN-BNBN*nN)tN(t) , t b 0 , 

so that from (4.5) 

1 d  
2 dt H 
- -  

and from (4.2) 

The integration of this inequality with respect to t yields 

Now the lemma follows from Theorem 2.1. 

Q.E.D. 
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It then follows from Lemma 4.1 and (4.8) that 

N- N N * ~ N  
Similary for e ( A  )t , t 3 0. Therefore we obtain, using (3.6) and 

(3.7), 

(4.9) IIrP - s MY . 

where y is given by (4.8). 

Consider the (I-dimensional) parabolic control system [2] ;  

a a a a 
- z(t,x) = - (p(x) at ax ax 

z) + q(x) - z + 4x12 

m 
+ I: bi(x)ui(t) in (0.1) 

i=l 

with boundary condition 

below by a positive constant 

In this case, H = L2(0,1) and V = Hi(O,l), and the bilinear form CY is 

given by 

z(t,O) = z(t,l) = 0, where p E C1(O,l), being bounded 
d 
dx  

w, - q, r E LaD(O,l), and bi E L2(0,1), i = 1 ,..., m. 

B: BY' 4 L2(0,1) is defined by 

m 
(Bu)(x) = I: bi(x)ui for  u E BY' , 

i=l 

and 

finite dimensional subspace ZN of V: 

dom(A) = dom(A*) = H2(0,1) n Hi(0,l). Let us consider the following 

I 
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I 

where BF(-), i = 1, ..., N-1 are the linear B-spline elements on the interval [0,1]; 

].e., 

i+l i+l 

i-1 i 

-N(x--) N , 
x 6 [i , --] 

N ( x - - ) ,  N X I  [%,-I 
9 elsewhere 

Then the approximation condition (4.6) is satisfied [8]. Suppose ( A B )  is 

stabilizable and (A,C) is detectable. Then (1.5) has the unique solution n 

and using a similar arguments to those given above to show the regularity of 

solutions to Liapanov equation (4.7), one can show that for x E H, nx E 

dom(A*). Since A* is closed in H and dom(A*) C V, by the closed graph 

theorem, there exists a positive constant k,, such that 

Hence the fundamental error estimate (e&, [8]) gives 

< k  z PZ IIH2(0,1) 11 llL2(0,1) * 

for some positive constants k,,k,. Now it follows from (4.8) and (4.9) that 

pN - iNl1 < IC[;] for some constant k. 

4.2 Hereditarv Differential Systems 

Consider the hereditary differential system in @; 

x(t) = Aox(t) + Alx(t-r) + A(B)x(t+B)dO I" 
x(0) = r) and x(8) = He), -r < 8 < 0 

Y(t) = c x(t) 

(4.10) 

+ Bu(t) 
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and the optimal control problem; for given initial data z = (O,@) E P x 

L2(-r,0; W) , minimize the cost functional 

Here, x E P, u E ar" and y E B\p and the element of A ( - )  is square 

integrable. It is shown [I] that (4.10) and (4.11) are equivalently formulated as 

the problem (1.1) - (1.4) on the product space Z = w" x L2(-r,0;lR"); i.e., z(t) = 

(x(t),x(t+-)) E Z is the mild solution of (1.1) with 

dom(A) = ( (O ,Q)  E Z : Q E H1(-r,O) and NO) = 0) , 

The input operator B : Iw" + Z and the output operator C : Z -, are 

given by 

Bu = (Bu,O) E Z and C(O,Q) = CO . 

Let us consider the averaging approximation [l] of (4.10); let 

N 
zN = (z E z :z= (ao, E akx i-l ), a , E R " , O d k d N } C Z ,  

k=l [-- r,- - r) 
N N  

and AN has the matrix representation (QN)-'HN on IR"(N+') when ZN is 

identified with R'(N+') by its coordinate vector col(a:, ..., a:), where the block 

diagonal matrix QN and the block Hessenberg matrix HN are given by 

r -I - N  N N 
I A, A, ... A, 

- 
r 
- 1  I -I 

. .  and HN = QN = N 

. .  
I -I . r  - - 1  - - - 

N 
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from the arguments and error estimate 
a 

i-1 N-l - -r - - r  
with A! = A, , AN= 1 N A (8)dO and A: = A, + N A(8)dO. Note that 

-r i 
- - r  

N 
PNB = B and CPN = C. Set BN = B and CN = C. Then (AN)* has the 

matrix representation (QN)-'HNT on P(N+l). (Hl)(i) is proved in El] and 

(Hl)(ii) is proved in [3]. Using the arguments in [5 ] ,  [7] one can show that 

(H3) is satisfied (Le., (i) is straightforward but (ii) is not so). Thus, the 

formula (3.8)-(3.9) yields 

]In" - ; I q  d 2II(A* - AN*PN)nIl 

By the regularity result in [4], if A(.) E HI(-r,O;RnXn), then 

A*n + C*C E dom(A*) 

where dom(A*) = {(y,J,) E Z : J, E H' and H-r) = ATy} and 

(Q(0) + Azy, - k8) + AT(-)y) E Z [3]. Since C*C(O,$) = (CTCO,O) E Z for 

( O , O )  E Z, this implies that if rIz = (y,J,), then J, E H1 so that J, E H2, and 

since A* is closed, 11$11 d Mllzllz for some constant M. It  then follows 

A*(y,Q) = 

H2 
in [I], [3] that 

lIJ,llHJ 
1 

Hence we obtain 11"" - = O( -) . 
fi 

h 
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